Integración de la IA en la educación: Desafíos y oportunidades

Palabras clave: Inteligencia Artificial, Educación, Aprendizaje

Resumen

El desarrollo bibliográfico discute cómo la inteligencia artificial (IA) puede mejorar la educación en todos sus niveles y los desafíos que la integración de las tecnologías presenta, como el riesgo de sesgo y la necesidad de políticas adecuadas para su uso ético. Adicionalmente, se explora el potencial de la inteligencia artificial (IA) para apoyar a los docentes, personalizar el aprendizaje y mejorar la accesibilidad para estudiantes con discapacidades o necesidades especiales. Se reconoce la posibilidad de que la IA introduzca nuevos riesgos de seguridad y privacidad, así como la amplificación de sesgos existentes. En tal sentido, se sugiere la creación de políticas centradas en las personas, que protejan la privacidad y promuevan la equidad, asegurando que la IA se utilice de manera que beneficie a todos en el ámbito educativo. Este resumen destaca la importancia de abordar tanto las oportunidades como los desafíos que la IA presenta en la educación, con un enfoque en la equidad, la ética y la eficacia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Edmundo Daniel Quinto Ochoa, Universidad Agraria del Ecuador
Magíster en Gerencia de Tecnologías de la Información; Profesor de Segunda Enseñanza Especialización Informática y Programación; Licenciado en Ciencias de la Educación Mención Informática y Programación; Tecnólogo Pedagógico en Informática y Programación; Universidad Agraria del Ecuador; Guayaquil, Ecuador
Jazmin Del Rocio Mazzini Moran, Universidad Laica Vicente Rocafuerte
Magíster en Ingeniería Civil Mención Hidráulica; Ingeniera Civil; Universidad Laica Vicente Rocafuerte; Guayaquil, Ecuador
Sara Noemi Erráez Mantilla, Ministerio de Educación del Ecuador
Máster Universitario en Tecnología Educativa y Competencias Digitales; Licenciada en Ciencias de la Educación mención Informática y Programación; Ministerio de Educación del Ecuador; Guayaquil, Ecuador
Lenin Stalin Suasnabas Pacheco, Universidad de Guayaquil
Magíster en Gerencia de Tecnologías de la Información; Licenciado en Ciencias de la Educación mención Informática y Programación; Profesor de Segunda Enseñanza Especialización Informática y Programación; Tecnólogo Pedagógico en Informática y Programación; Doctorando de Educación de las Universidad Católica Andrés Bello; Docente de la Universidad de Guayaquil, Gestor de Investigación de la Facultad de Odontología; Guayaquil, Ecuador

Citas

,Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics, 431–440.

Aleven, V., & McLaughlin, E. (2016). Instruction based on adaptive learning technologies. Handbook of research on learning and instruction, 522-560.

Baker, R. E. (2022). Using demographic data as predictor variables: A questionable choice. Obtenido de https://doi.org/10.35542/osf.io/y4wvj

Calderón, O. (2020). Los retos de la Educación 4.0. frente a los tiempos de confinamiento. . Revista de Educación, Cultura y Cambio, 1(1), 1-18. Recuperado el 04 de Abr de 2024, de https://bit.ly/3u9n3wv

Chen, C., Park, H., & Breazeal, C. (2020). Teaching and learning with children: Impact of reciprocal peer learning with a social robot on children’s learning and emotive engagement. Computers & Education, 150.

Godwin, R. (2021). Big data and language learning: Opportunities and challenges. Language Learning & Technology, 4-19.

Molenaar, I. (2022). Towards hybrid human-AI learning technologies. European Journal of Education, 1–14.

Mousavinasab, E., Zarifsanaiey, N., & Niakan Kalhori, S. (2022). Intelligent tutoring systems: A systematic review of characteristics, applications, and evaluation methods. . Interactive Learning Environments, 142-163.

Panadero, E., & Lipnevich, A. (2022). A review of feedback models and typologies: Towards an integrative model of feedback elements. Educational Research Review, 100416.

Plass, J., & Pawar, S. (2020). Toward a taxonomy of adaptivity for learning. Journal of Research on Technology in Education, 275–300.

Robles, B. (2017). La utilización de objetos de aprendizaje de realidad aumentada en la enseñanza universitaria de educación primaria. International Journal of Educational Research and Innovation, 9, 90-104. Recuperado el 04 de Abr de 2024, de https//bit.ly/3E15wua

Ruiz, P., & Fusco, J. (2022). Teachers partnering with artificial intelligence: Augmentation and automation. Obtenido de Digital Promise: https://digitalpromise.org/2022/07/06/teachers-partnering- with-artificial-intelligence-augmentation-and-automation/

Wiggins, G. (2015). Seven keys to effective feedback. Obtenido de ACSD: https://www.ascd.org/el/articles/seven-keys-to-effectivefeedback

Winne, P. (2021). Open learner models working in symbiosis with self-regulating learners: A research agenda. International Journal of Artificial Intelligence in Education, 446-459.

Zhang, H., Lee, I., & Ali, S. (2022). Integrating ethics and career futures with technical learning to promote AI literacy for middle school students: An exploratory study. International Journal of Artificial Intelligence in Education, 1–35.

Publicado
2024-04-12
Cómo citar
Quinto Ochoa, E. D., Mazzini Moran, J. D. R., Erráez Mantilla, S. N., & Suasnabas Pacheco, L. S. (2024). Integración de la IA en la educación: Desafíos y oportunidades. RECIMUNDO, 8(1), 193-202. https://doi.org/10.26820/recimundo/8.(1).ene.2024.193-202
Sección
Artículos de Revisión

Artículos más leídos del mismo autor/a